Paper Code: BCA-106

Time: 3 Hours

Subject: Digital Electronics

(Batch 2011 onwards)

Maximum Marks: 75

END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY JUNE 2017

Note: Attempt any five questions including Q.no.1 which is compulsory.

Select one question from each unit.

_		
Q1	Attempt any five from the following:- (a) Design full subtractor circuit using NAND gate only.	(5x5=25)
	(b) Explain how transistor as a switch works? Give its use in logic circular.(c) Define fan-in, fan-out, propagation delay, noise margin and parameters.	
	(d) Explain decoder and demultiplexer. Give their applications.(e) State the De Morgan's theorem and prove them with an example.(f) Define synchronous and asynchronous counters with their m demerits.	ierit and
	UNIT-I	
Q2	Simply the expressions:-	
	(a) $AB + \overline{AC} + A\overline{B}C(AB + C)$ (b) Explain the operation and advantages of CMOS.	(3) (6.5)
	(c) Prove $A + \bar{A}B = A + B$	(3)
Q3	(a) Design a combinational circuit whose input is three bit number as	
	output is equal to square of input and implement it using basic gate (b) Explain briefly the BCD to seven segment decoder.	es. (6.5) (6)
	UNIT-II	
Q4	(a) Design a full adder circuit using Multiplexer.(b) Implement the Ex-OR gate equation with NAND gates only.	(6.5) (6)
Q5	(a) Draw the logic diagram of parity checker and generator/checker. Experimental operation with the help of truth table.(b) Design a binary multiplier for following: A=1011, B=111	xplain its (6.5) (6)
	UNIT-III	
Q6	(a) Define edge triggering in flip-flops. Explain Master slave JK flip-solves the problem of Race-around condition, with diagram.	flop that
	(b) Design JK flip-flop using SR flip-flop.	(5.5)
Q7	(a) Explain the bidirectional shift register with diagram, truth table a	ınd clock
	pulse. Give their applications. (b) Differentiate Static RAM and Dynamic RAM.	(7.5) (5)
	UNIT-IV	
Q8	(a) Design Modulo 7 counters with truth table and logic diagram.(b) Give the application of PLA and PLD.	(7.5) (5)
Q9	(a) Design a combinational circuit with PLA, having three inputs, four terms and two outputs:	product (7.5)
	F1(A,B,C)= Σ (3,5,6,7), F2(A,B,C)= Σ (0,2,4,7) (b) Explain Johnson's counter with truth table and clock pulses.	(5)
