END TERM EXAMINATION

FIRST SEMESTER [BCA] DECEMBER 2016

Paper Code: BCA-101

Subject: Mathematics-I

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q no.1 which is compulsory.

Select one question from each unit.

Q1 (a) Prove that every square matrix is uniquely expressible as the sum of a symmetric matrix and a skew symmetric matrix. (5)

(b) For what value of x, the matrix

(5)

$$A = \begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$$
is singular.

(c) Using properties without expanding prove that:

(5)

$$\begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

- (d) Show that $f(x) = \begin{cases} 2x 1; & x < 2 \\ 3; & x = 2 \\ x + 1; & x > 2 \end{cases}$ is continuous at x = 2. (5)
- (e) Show that function $f(x) = \sin x(1 + \cos x)$ is maximum when $x = \frac{\pi}{3}$. (5)

UNIT-I

Q2 (a) If the matrix is orthogonal, then find the values of a, b and c where matrix is

$$A = \begin{bmatrix} a & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}. \tag{6.5}$$

- (b) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} -2 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$. Also, find A-1.
- Q3 (a) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$ (6)
 - (b) Examine the following system of vectors for linearly dependence. If dependent, find the relation between them
 X₁ = (1, -1, 1); X₂ = (2, 1, 1); X₃ = (3,0,2).

UNIT-II

Q4 (a) Find the value of a so that the function
$$f(x) = \begin{cases} ax+5 & \text{if } x \le 2 \\ x-1 & \text{if } x > 2 \end{cases}$$
 is continuous at $x = 2$.

(b) Evaluate:-

(i)
$$\lim_{x \to 2} \left(\frac{x^3 - 2}{x - 2} \right)$$
; (ii) $\lim_{x \to 0} \frac{|x|}{x}$; $x \neq 0$

Q5 (a) Evaluate:-

(i)
$$\lim_{x \to \sqrt{2}} \left(\frac{x^4 - 4}{x^2 + 3\sqrt{2}x - 8} \right)$$
; (ii) $\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}$ (6)

(b) If the function
$$f(x) = \begin{cases} 3ax + b; & for & x > 1 \\ 11; & for & x = 1 \text{ is continuous at } x = 1, \text{ find } 5ax - b; & for & x < 1 \end{cases}$$
 the values of a and b. (6.5)

UNIT-III

Q6 (a) Find
$$\frac{dy}{dx}$$
 if:-

(i) $y = \sin \sqrt{x}$ (ii) $x^y . y^x = k$, where k is a constant (iii) $y = \sin^3 2x$ (6)

(b) Find the nth derivative of $\log(2x+3)$ (6.5)

Q7 (a) Find all the asymptotes of the curve
$$y^2(x-2a) = x^3 - a^2$$
. (6.5)
(b) If $y = \sin(m\sin^{-1}x)$, then prove that $(1-x^2)y_{n+2} = (n^2 - m^2)y_n + (2n+1)xy_{n+1}$ (6)

UNIT-IV

Q8 (a) Solve the following integrals:-

(i)
$$\int xe^{-x}dx$$
 (ii) $\int \frac{x^4+1}{x^2+1}dx$ (iii) $\int x^n \log x dx$

(b) Prove that $\beta(m,n) = \frac{\int m \int n}{\int m+n}$

(6.5)

Q9 (a) Find out the reduction formulae for ∫₀^{π/4} sinⁿ xdx, n being a positive integer.
 (6.5)
 (b) If ∫₀^{π/4} tanⁿ xdx, then prove that I_n - I_{n-1} = 1/(n-1); n being a positive integer >1. Hence, evaluate I₅.
