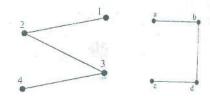
END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY-JUNE 2017

Pap	er Code: BCA-102	Subject: Mathematics-II
Tim	e: 3 Hours	Maximum Marks: 75
Note: Attempt any five questions including Q.no.1 which is compulsory. Select one question from each Unit.		
	•	
Q1	domain and range of the relation (b) Let D denote the set of all positions.	tive divisors of the positive integer n.
	such that $f(n) = n + 1$, $g(n) = 2n$ (e) Define Tautology and contradicti	Graphs with example. (3) N (set of natural numbers) for $N \in N$ n. Find fog and gof . (3) ons. (2)
	an equivalence relation.	l lines in the set of lines on a plane is (2)
	for $p \wedge q$, and $p \vee q$.	nd q as you like. Draw the truth table (2)
	(h) Consider the graph G (V, E) when D and E of five edges where	ere v consists of Four vertices A, B, C, $e_1 = \{A, B\}, e_2 = \{B, C\}, e_3 = \{C, D\}, e_4 = \{C, D\}, e$
		such that $f(x) = 2x + 3$. Show that f is
	invertible and find its inverse. (j) If $n(A) = 40$, $n(B) = 30$, $n(A \cap B)$	= 20. Then find $n (A \cup B)$. (3)
	Unit	I
Q2	(a) Let $A = \{1, 2, 5, 6\}$, $B = \{2, 5, 7\}$, $C = Verify (A \times B) \cap \{A \times C\} = A \times \{a \in A \cap B, A \cup B, A^c \text{ and } B^c\}$.	$B \times C$. (6) set of all positive integers and
Q3	equivalence relation. (b) For the sets A, B, C prove the fol	n a set A. Then prove that R^{-1} is also (6) lowing results.), (ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.(6.
	Unit-	п
Q4	(a) In a lattice (L, \leq) , prove that (i) $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$. (i) Define Bounded lattice and prove	i) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$. (6) e that every lattice L is bounded. (6.5)
Q5	elements of (D_{30}, I) .	o find the complement (if exists) of all (6.5) be equipped with relation x divides y. (6) P.T.O.

BCA-102


Unit-III

Q6 (a) Let G be an undirected graph with m vertices, say $v_1, v_2, v_3, \dots v_m$. Define the adjacent matrix A of G. Consider the undirected graph G with 5 vertices v_1, v_2, v_3, v_4, v_5 shown in the following diagram. Find the adjacent matrix of this graph. (6.5)

(b) Draw the directed graph for the following incident matrix. Also find the degree of all vertex.

Q7 (a) Show that the two graphs shown in the figure are Isomorphic. (6.5)

(b) Prove that the union of two graphs G_1 and G_2 will be a graph such that.

$$V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \text{ and } E(G_1 \cup G_2) = E(G_1) \cup E(G_2).$$
 (6)

Unit-IV

- Q8 (a) By means of truth tables, justify that the conditional statement "If p then q" is logically equivalent to the statement "Not p or q". (6.5)
 - (b) Define a proposition. Let p and q be propositions and p → q denote compound proposition, "if p then q". Draw the truth table for the compound proposition p→q. Let p: you try, and q: you will succeed. Justify the truth table for p →q.
- Q9 (a) Verify De-morgan's laws for propositions. And also prove that. $P \land (q \lor r) = (p \land q) \lor (p \land r)$. (6.5) (b) Consider the following:
 - P: Today is Tuesday, Q: It is raining, R: It is cold.

Write in simple sentence the meaning of the following:

- (i) $\sim q \rightarrow (r \land q)$
- (ii) $(p \lor q) \leftrightarrow r$

BCA-102 P2/2